

Copyright © ComponentSpace Pty Ltd 2022-2025. All rights reserved.
www.componentspace.com

ComponentSpace

OpenID Connect for
ASP.NET Core

Certificate Guide

ComponentSpace OpenID Connect for ASP.NET Core Certificate Guide

i

Contents
Introduction ... 1

Transport Layer Security Certificates .. 1

Signature and Encryption Certificates ... 1

Self-Signed Certificates .. 1

CA-Issued Certificates.. 1

HTTPS Shared Certificates .. 2

Certificate Storage ... 2

Certificate Files .. 2

Windows Certificate Store .. 3

Store Location and Name .. 4

Certificate Strings ... 4

Application Configuration ... 5

Azure Key Vault .. 6

Key Vault Configuration Provider ... 6

Certificate Status ... 6

Certificate Use ... 7

Certificate Rollover .. 7

Certificate Validation ... 8

Generating Self-Signed Certificates .. 8

New-SelfSignedCertificate .. 8

Export-Certificate ... 9

CertUtil .. 9

Export-PfxCertificate .. 9

Certificate File Formats .. 9

DER Format .. 10

PEM Format ... 10

PKCS#12 Format .. 10

Certificate File Permissions .. 10

ComponentSpace OpenID Connect for ASP.NET Core Certificate Guide

1

Introduction
X.509 certificates are used to secure messages and tokens sent between the OpenID Connect
(OIDC) client and provider.

This guide describes the generation, management, and configuration of X.509 certificates used
to secure OpenID Connect.

Transport Layer Security Certificates
The OpenID Connect specification recommends that all communications are over HTTPS.

As most use cases include some OpenID Connect messages being exchanged between the
OpenID client and provider via the browser, it’s important to ensure certificates for HTTPS are
issued by a certificate authority (CA).

Certificates not issued by a CA (e.g. self-signed certificates) will result in the browser
presenting a warning message to the user.

Signature and Encryption Certificates
Certificates used for signature and/or encryption support may be:

• Self-signed
• CA-issued
• Shared with HTTPS

The best option will depend on the specific business requirements.

Potential advantages and disadvantages are outlined in the following sections.

Self-Signed Certificates
Self-signed certificates have the following advantages:

• No cost
• May be created as required
• May have longer expiry times than CA-issued certificates

They have the following disadvantages:

• Certificate chain cannot be validated as the certificate of the issuer is the same
certificate

Although self-signed certificates cannot be validated, their use will be limited to a few trusted
parties.

CA-Issued Certificates
CA-issued certificates have the following advantages:

• Certificate chain can be validated
• Support for certificate revocation lists (CRLs)

They have the following disadvantages:

• Cost

ComponentSpace OpenID Connect for ASP.NET Core Certificate Guide

2

• May be a delay in issuance

HTTPS Shared Certificates
CA-issued certificates for HTTPS endpoints also may be used for signature and/or encryption.

Sharing certificates has the following advantages:

• All the advantages of CA-issued certificates
• More cost effective

Sharing has the following disadvantages:

• All the disadvantages of CA-issued certificates
• If the certificate is compromised, security is compromised at both the transport and

application layer

Certificate Storage
Configuration supports certificates stored in:

• Certificate file
• Windows certificate store
• Certificate string
• Application configuration
• Azure key vault

The best option will depend on the specific business requirements.

Certificate Files
Certificates may be stored on the file system as base-64 encoded or DER encoded .CER files.

A certificate and its associated private key may be stored on the file system as a .PFX file.

These are the certificate file formats supported by Windows.

An OpenID provider certificate stored on the file system may be specified in the provider
configuration.

"ProviderCertificates": [
 {
 "FileName": "certificates/op.pfx",
 "Password": "password"
 }
]

A provider certificate file always will be a .PFX as it must include the private key. The password
protects the .PFX file.

A client certificate stored on the file system may be specified in the client configuration.

"ClientCertificates": [
 {

ComponentSpace OpenID Connect for ASP.NET Core Certificate Guide

3

 "FileName": "certificates/client.cer"
 }
]

A client certificate file always will be a .CER as it contains the public key only. A password is not
required to protect the .CER file.

Windows Certificate Store
Certificates and their associated private keys, if any, may be stored in the Windows certificate
store.

A provider certificate stored in the Windows certificate store may be specified in the provider
configuration. The certificate must include a private key.

Refer to the Private Key Permissions section to ensure the application process has read
permission for the private key.

The certificate may be identified by its serial number.

"ProviderCertificates": [
 {
 "SerialNumber": "331df5506e114644"
 }
]

Alternatively, the certificate may be identified by its thumbprint.

"ProviderCertificates": [
 {
 "Thumbprint": "2ea91613e2eb2a060a7d0b35975eb436122c753e"
 }
]

Or the certificate may be identified by its subject name.

"ProviderCertificates": [
 {
 "SubjectName": "ExampleOpenIDProvider"
 }
]

Similarly, a client certificate stored in the Windows certificate store may be specified in the
client configuration. The certificate will not include a private key.

The certificate may be identified by its serial number, thumbprint, or subject name.

"ClientCertificates": [

ComponentSpace OpenID Connect for ASP.NET Core Certificate Guide

4

 {
 "Thumbprint": "20e25105f62bef6c69a9b6c5f2ad5d6633efb243"
 }
]

Store Location and Name
By default, certificates are expected to be stored in the local machine’s personal certificate
store.

In a hosted environment, instead of the local machine’s store, the current user store may be
used.

"ProviderCertificates": [
 {
 "StoreLocation: "CurrentUser"
 "Thumbprint": "2ea91613e2eb2a060a7d0b35975eb436122c753e"
 }
]

Generally, it’s recommended that certificates are stored in the personal certificate store.
However, it is possible to reference certificates stored elsewhere.

"ProviderCertificates": [
 {
 "StoreName: "WebHosting"
 "Thumbprint": "2ea91613e2eb2a060a7d0b35975eb436122c753e"
 }
]

Certificate Strings
Certificates may be specified as base-64 encoded strings.

This facilitates storing certificates in a database and setting configuration programmatically.

A provider certificate string may be specified in the configuration.

"ProviderCertificates": [
 {
 "String": "MIIC/jCCAeagAwIBAgIQ…",
 "Password": "password"
 }
]

A provider certificate string is the base-64 encoded bytes making up the certificate and its
private key. The password protects the certificate string.

PowerShell may be used to convert a PFX certificate file to a base-64 string.

ComponentSpace OpenID Connect for ASP.NET Core Certificate Guide

5

For example:

$bytes = [System.IO.File]::ReadAllBytes("op.pfx")
[System.Convert]::ToBase64String($bytes)

Alternatively, the Microsoft utility, CertUtil, may be used to convert a PFX certificate file to base-
64.

For example:

Certutil.exe -encode c:\certs\op.pfx c:\certs\b64-op.pfx

A client certificate string may be specified in the configuration.

"ClientCertificates": [
 {
 "String": "MIIJegIBAzCCCTYGC…"
 }
]

A client certificate string contains the public key only. A password is not required to protect the
certificate string.

The Microsoft utility, CertUtil, may be used to convert DER-encoded certificate files to base-64.

For example:

Certutil.exe -encode c:\certs\client.cer c:\certs\b64-client.cer

Application Configuration
Certificates may be stored as part of the application’s configuration.

These certificates are accessed through Microsoft’s IConfiguration interface and identified by
configuration keys.

An optional password may be specified if required.

The method for setting this configuration is left to the application. However, one use is to
access certificates stored in an Azure key vault. Refer to the Azure Key Vault section for more
information.

The configuration value is the certificate, and optionally its private key, encoded as a base-64
string.

The Certificate Strings section describes how to convert certificates and private keys into base-
64 encoded strings.

"ProviderCertificates": [

ComponentSpace OpenID Connect for ASP.NET Core Certificate Guide

6

 {
 "Key": "OP"
 "Password": "password"
 }
]

Azure Key Vault
Certificates may be stored in an Azure key vault.

For general information on the Azure key vault, refer to:

https://docs.microsoft.com/en-us/azure/key-vault/

Note that only certificates with private keys may be stored in the key vault.

Also note that applications do not have to be deployed to Azure to take advantage of an Azure
key vault.

The Azure configuration steps are:

• Register in Azure Active Directory the application that will access the key vault,
including a password.

• Create the key vault and import or generate certificates.
• Set the key vault access policies to permit the registered application to get and list the

keys, secrets, and certificates.

The name specified in the key vault is used as the certificate configuration key.

A password is not required.

"ProviderCertificates": [
 {
 "Key": "ExampleOpenIDProvider"
 }
]

Key Vault Configuration Provider
The application is responsible for establishing a connection to the key vault.

https://docs.microsoft.com/en-us/aspnet/core/security/key-vault-
configuration?tabs=aspnetcore2x

Certificate Status
By default, any certificate specified is assumed to be available for use.

However, it is possible to identify certificates as being active, retired or for future use. This
assists with certificate rollover.

Only active certificates are used for signature generation or encryption.

Retired certificates are previously active certificates that are no longer in use.

https://docs.microsoft.com/en-us/azure/key-vault/
https://docs.microsoft.com/en-us/aspnet/core/security/key-vault-configuration?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/security/key-vault-configuration?tabs=aspnetcore2x

ComponentSpace OpenID Connect for ASP.NET Core Certificate Guide

7

Future certificates will become active at some future point in time.

For example, the first certificate has been retired. The second certificate is active. The third
certificate will become active at some point.

All certificates are included when returning the provider’s keys as part of discovery.

"ProviderCertificates": [
 {
 "Status": "Retired"
 "SubjectName": "january-ExampleOpenIDProvider"
 },
 {
 "Status": "Active"
 "SubjectName": "may-ExampleOpenIDProvider"
 },
 {
 "Status": "Future"
 "SubjectName": "september-ExampleOpenIDProvider"
 }
]

Certificate Use
By default, any certificate specified is assumed to be available for signature support and
encryption support.

However, it is possible to limit the use of a certificate to only signature support or encryption
support.

For example, the first certificate is used for signature verification. The second certificate is used
for encryption.

"ClientCertificates": [
 {
 "Use": "Signature"
 "SubjectName": "signature-ExampleOpenIDClient"
 },
 {
 "Use": "Encryption"
 "SubjectName": "encryption-ExampleOpenIDClient "
 }
]

Certificate Rollover
Certificate rollover refers to replacing a certificate that’s about to expire or that potentially has
been compromised.

Through OpenID Connect’s discovery mechanism, clients may retrieve the OpenID provider’s
JSON Web Key Set [JWK] document.

ComponentSpace OpenID Connect for ASP.NET Core Certificate Guide

8

This ensures clients can retrieve any new public keys associated with a certificate rollover.

Certificate Validation
By default, certificates are checked to see if they’ve expired. Additional checks may be enabled
through the CertificateValidationOptions. Refer to the Developer Guide for more information.

Validation of certificate chains including checking CRLs can be a relatively expensive operation,
especially if it requires off-server communications to retrieve CRLs.

Therefore, consideration must be given to the performance impact associated with certificate
validation during SSO.

If further and potentially more expensive validation is required, it should be considered a
separate operation that’s performed on a regular basis (e.g., nightly). A revoked certificate
would require re-issuance of the certificate and potential coordination with users of the
certificate.

Generating Self-Signed Certificates
New-SelfSignedCertificate
Self-signed certificates may be generated using PowerShell’s New-SelfSignedCertificate
cmdlet.

https://technet.microsoft.com/en-us/itpro/powershell/windows/pkiclient/new-
selfsignedcertificate

This must be run as an administrator to have permission to save certificates to the certificate
store.

The subject name should reflect the name of your organization.

The expiry date may be set as required.

Note that to generate SHA-256, SHA-384 and SHA-512 signatures, the Microsoft Enhanced RSA
and AES Cryptographic Provider must be specified.

For example:

New-SelfSignedCertificate
 -Subject "ExampleOpenIDProvider"
 -CertStoreLocation cert:\LocalMachine\My
 -Provider "Microsoft Enhanced RSA and AES Cryptographic Provider"
 -HashAlgorithm SHA256
 -KeyLength 2048
 -NotAfter 1/1/2050

Some or all certificate details may be retrieved using the Get-ChildItem cmdlet or equivalent
synonym.

For example:

set-location Cert:\LocalMachine\My

https://technet.microsoft.com/en-us/itpro/powershell/windows/pkiclient/new-selfsignedcertificate
https://technet.microsoft.com/en-us/itpro/powershell/windows/pkiclient/new-selfsignedcertificate

ComponentSpace OpenID Connect for ASP.NET Core Certificate Guide

9

get-childItem | select Subject,SerialNumber,Thumbprint

For example:

set-location Cert:\LocalMachine\My
get-childItem | select *

Export-Certificate
The Export-Certificate cmdlet may be used to export the certificate to a DER-encoded
certificate file.

https://technet.microsoft.com/en-us/itpro/powershell/windows/pkiclient/export-certificate

For example:

Export-Certificate
 -Cert cert:\LocalMachine\My\295CB3430153889D6523554A002134425167F16E
 -FilePath c:\certs\op.der

CertUtil
The exported certificate file is DER-encoded. The Microsoft utility, CertUtil, may be used to
convert this to a base-64 encoded certificate file.

For example:

Certutil.exe -encode c:\certs\op.der c:\certs\op.cer

Export-PfxCertificate
The Export-PfxCertificate cmdlet may be used to export the certificate and private key to a PFX
file.

https://technet.microsoft.com/en-us/itpro/powershell/windows/pkiclient/export-pfxcertificate

For example:

$password = ConvertTo-SecureString -String "password" -Force -AsPlainText

Export-PfxCertificate
 -Cert cert:\LocalMachine\My\295CB3430153889D6523554A002134425167F16E
 -FilePath c:\certs\op.pfx
 -ChainOption EndEntityCertOnly
 -Password $password

Certificate File Formats
Windows and the .NET framework support several certificate file formats.

https://technet.microsoft.com/en-us/itpro/powershell/windows/pkiclient/export-certificate
https://technet.microsoft.com/en-us/itpro/powershell/windows/pkiclient/export-pfxcertificate

ComponentSpace OpenID Connect for ASP.NET Core Certificate Guide

10

DER Format
The Distinguished Encoding Rules (DER) format stores X.509 certificates as binary.

Standard file extensions are .cer, .crt and, less commonly on Windows, .der.

PEM Format
The Privacy-enhanced Electronic Email (PEM) format stores X.509 certificates as base-64
encoded strings.

The certificate string is wrapped by "-----BEGIN CERTIFICATE-----" and "-----END CERTIFICATE---
--" although these are optional on Windows.

Standard file extensions are .cer, .crt and, less commonly on Windows, .pem.

PKCS#12 Format
Public-Key Cryptography Standards (PKCS) #12 stores X.509 certificates and associated private
keys as binary.

Normally the content is protected by a password.

Standard file extensions are .pfx and, less commonly on Windows, .p12.

Certificate File Permissions
The account under which the application is running must have read permission to the
certificate file.

For a .PFX file, the account also must have read permission to the location where the private
key is stored.

Private keys are stored in containers on the file system. Typically, the location of the private key
container is:

C:\ProgramData\Microsoft\Crypto\RSA\MachineKeys

If required, the FindPrivateKey.exe Windows SDK utility may be run to locate the private key
container.

http://msdn.microsoft.com/en-us/library/aa717039.aspx

The application account must have permission to create a file in the private key container
folder.

http://msdn.microsoft.com/en-us/library/aa717039.aspx

